Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein.
نویسندگان
چکیده
Nox-1 from Streptococcus mutans, the bacteria which cause dental caries, was previously identified as an H2O2-forming reduced nicotinamide adenine dinucleotide (NADH) oxidase. Nox-1 is homologous with the flavoprotein component, AhpF, of Salmonella typhimurium alkyl hydroperoxide reductase. A partial open reading frame upstream of nox1, homologous with the other (peroxidase) component, ahpC, from the S. typhimurium system, was also identified. We report here the complete sequence of S. mutans ahpC. Analyses of purified AhpC together with Nox-1 have verified that these proteins act as a cysteine-based peroxidase system in S. mutans, catalyzing the NADH-dependent reduction of organic hydroperoxides or H2O2 to their respective alcohols and/or H2O. These proteins also catalyze the four-electron reduction of O2 to H2O2, clarifying the role of Nox-1 as a protective protein against oxygen toxicity. Major differences between Nox-1 and AhpF include: (i) the absolute specificity of Nox-1 for NADH; (ii) lower amounts of flavin semiquinone and a more prominent FADH2 to NAD+ charge transfer absorbance band stabilized by Nox-1; and (iii) even higher redox potentials of disulfide centers relative to flavin for Nox-1. Although Nox-1 and AhpC from S. mutans were shown to play a protective role against oxidative stress in vitro and in vivo in Escherichia coli, the lack of a significant effect on deletion of these genes from S. mutans suggests the presence of additional antioxidant proteins in these bacteria.
منابع مشابه
Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis
Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could...
متن کاملCofactor Specificity Engineering of Streptococcus mutans NADH Oxidase 2 for NAD(P)+ Regeneration in Biocatalytic Oxidations
Soluble water-forming NAD(P)H oxidases constitute a promising NAD(P)(+) regeneration method as they only need oxygen as cosubstrate and produce water as sole byproduct. Moreover, the thermodynamic equilibrium of O2 reduction is a valuable driving force for mostly energetically unfavorable biocatalytic oxidations. Here, we present the generation of an NAD(P)H oxidase with high activity for both ...
متن کاملHydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria.
Amphibacillus xylanus and Sporolactobacillus inulinus NADH oxidases belonging to the peroxiredoxin oxidoreductase family show extremely high peroxide reductase activity for hydrogen peroxide and alkyl hydroperoxides in the presence of the small disulfide redox protein, AhpC (peroxiredoxin). In order to investigate the distribution of this enzyme system in bacteria, 15 bacterial strains were sel...
متن کاملFlavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins.
The two components, AhpF and AhpC, of the Salmonella typhimurium alkyl hydroperoxide reductase enzyme system have been overexpressed and purified from Escherichia coli for investigations of their catalytic properties. Recombinant proteins were isolated in high yield (25-33 mg per liter of bacterial culture) and were shown to impart a high degree of protection against killing by cumene hydropero...
متن کاملA hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus.
The Amphibacillus xylanus NADH oxidase, which catalyzes the reduction of oxygen to hydrogen peroxide with beta-NADH, can also reduce hydrogen peroxide to water in the presence of free flavin adenine dinucleotide (FAD) or the small disulfide-containing Salmonella enterica AhpC protein. The enzyme has two disulfide bonds, Cys128-Cys131 and Cys337-Cys340, which can act as redox centers in addition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Free radical biology & medicine
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2000